Seventeen New Complete mtDNA Sequences Reveal Extensive Mitochondrial Genome Evolution within the Demospongiae

نویسندگان

  • Xiujuan Wang
  • Dennis V. Lavrov
چکیده

Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA) organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida). Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida) including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements, occurred in parallel in several lineages and suggest general trends in demosponge mtDNA evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals.

Homoscleromorpha is a small group in the phylum Porifera (Sponges) characterized by several morphological features (basement membrane, acrosomes in spermatozoa, and cross-striated rootlets of the flagellar basal apparatus) shared with eumetazoan animals but not found in most other sponges. To clarify the phylogenetic position of this group, we determined and analyzed the complete mitochondrial ...

متن کامل

Reconstructing ordinal relationships in the Demospongiae using mitochondrial genomic data.

Class Demospongiae (phylum Porifera) encompasses most of sponges' morphological and species diversity. It also represents one of the most challenging and understudied groups in animal phylogenetics, with many higher-level relationships still being unresolved. Among the unanswered questions are the most fundamental, including those about the monophyly of the Demospongiae and the relationships am...

متن کامل

High mutation rates in the mitochondrial genomes of Daphnia pulex.

Despite the great utility of mitochondrial DNA (mtDNA) sequence data in population genetics and phylogenetics, key parameters describing the process of mitochondrial mutation (e.g., the rate and spectrum of mutational change) are based on few direct estimates. Furthermore, the variation in the mtDNA mutation process within species or between lineages with contrasting reproductive strategies rem...

متن کامل

Analysis of the complete human mtDNA genome: methodology and inferences for human evolution.

The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evolution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study the complete mtDN...

متن کامل

Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny.

Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear-mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008